Structurable Algebras and the Magic Square

John Faulkner
University of Virginia

October 19, 2012

1 Jordan algebras

Let \mathcal{J} be a (linear) Jordan algebra $=$ commutative, unital nonassociative algebra in char $\neq 2$ with

$$
\begin{equation*}
\left(x^{2} \cdot y\right) \cdot x=x^{2} \cdot(y \cdot x) \tag{1}
\end{equation*}
$$

Now $\left[L_{x}, L_{y}\right] \in \mathfrak{d e r}(\mathcal{J})$ where $L_{x}(y)=x \cdot y$.

Also, $\left[D, L_{x}\right]=L_{D x}$ for $D \in \mathfrak{d e r}(\mathcal{J})$. Thus,

$$
\mathfrak{i n d e r}(\mathcal{J})=\left[L_{\mathcal{J}}, L_{\mathcal{J}}\right]
$$

is an ideal of $\mathfrak{d e r}(\mathcal{J})$, and

$$
\mathfrak{s t r l}(\mathcal{J})=L_{\mathcal{J}} \oplus \mathfrak{d e r}(\mathcal{J})
$$

is a Lie algebra called the structure Lie algebra of \mathcal{J} with ideal

$$
\mathfrak{i n s t r l}(\mathcal{J})=L_{\mathcal{J}} \oplus\left[L_{\mathcal{J}}, L_{\mathcal{J}}\right]
$$

Note

$$
\varepsilon: L_{x}+D \rightarrow-L_{x}+D
$$

is an automorphism of $\mathfrak{s t r l}(\mathcal{J})$.

Define

$$
V_{x, y}=L_{x \cdot y}+\left[L_{x}, L_{y}\right]
$$

We see $V_{x, 1}=L_{x}$, so $V_{\mathcal{J}, \mathcal{J}}=\mathfrak{i n s t r l}(\mathcal{J})$.

Also, if $A \in \mathfrak{g l}(\mathcal{J})$, then $A \in \mathfrak{s t r l}(\mathcal{J}) \Longleftrightarrow$

$$
\left[A, V_{x, y}\right]=V_{A x, y}+V_{x, B y}
$$

for some $B \in \mathfrak{g l}(\mathcal{J})$ and then $B=A^{\varepsilon}$.

Let $\mathcal{J}^{+}, \mathcal{J}^{-}$be two copies of \mathcal{J} and let

$$
\mathfrak{i n s t r l}(\mathcal{J}) \subset \mathcal{L} \subset \mathfrak{s t r l}(\mathcal{J})
$$

be a subalgebra. The Tits-Kantor-Koecher Lie algebra is

$$
T K K(\mathcal{J}, \mathcal{L})=\mathcal{J}^{-} \oplus \mathcal{L} \oplus \mathcal{J}^{+}
$$

with skew-symmetric product given by

$$
\begin{aligned}
{\left[\mathcal{J}^{\sigma}, \mathcal{J}^{\sigma}\right] } & =0 \\
{\left[x^{+}, y^{-}\right] } & =V_{x, y} \\
{[A, B] } & =A B-B A \\
{\left[A, x^{+}\right] } & =(A x)^{+} \\
{\left[A, y^{-}\right] } & =\left(A^{\varepsilon} y\right)^{-}
\end{aligned}
$$

for $\sigma= \pm, x^{+} \in \mathcal{J}^{+}, y^{-} \in \mathcal{J}^{-}, A, B \in \mathcal{L}$.

Example: $\mathcal{J}=$ Albert algebra
$=27$-dimensional exceptional Jordan algebra
$\mathfrak{d e r}(\mathcal{J})$ is a form of F_{4}
$\mathfrak{s t r l}(\mathcal{J})$ is a form of $E_{6} \oplus k$
$T K K(\mathcal{J}, \mathfrak{s t r l}(\mathcal{J}))$ is a form of E_{7}

Also note $e=1^{+}, f=1^{-}$, and $h=V_{1,1}$ form a $B_{1^{-}}$ triple:

$$
\begin{aligned}
{[e, f] } & =h, \\
{[h, e] } & =e, \\
{[h, f] } & =-f .
\end{aligned}
$$

I.e., the multiplication is like

$$
\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & -1 \\
0 & 0 & 0
\end{array}\right],\left[\begin{array}{ccc}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & -1 & 0
\end{array}\right],\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & -1
\end{array}\right] \in B_{1}
$$

rather than like the $\mathfrak{S l}_{2}$-triple

$$
\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right],\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right] \in \mathfrak{s l}_{2}
$$

e, f, h is a B_{1} triple $\Longleftrightarrow e, 2 f, 2 h$ is a $\mathfrak{s l}_{2}$-triple

Theorem (Tits, Kantor, Koecher): Let \mathcal{G} be a Lie algebra over a field of characteristic not 2 or 3 containing a $B_{1^{-}}$ triple e, f, h. If

$$
\mathcal{G}=\mathcal{G}_{-1} \oplus \mathcal{G}_{0} \oplus \mathcal{G}_{1}
$$

where \mathcal{G}_{k} is the k-eigenspace of $a d(h)$, then $\mathcal{J}=\mathcal{G}_{1}$ with product $x \cdot y=[[x, f], y]$ is a Jordan algebra, $\mathcal{L}=$ $\left.\operatorname{ad}\left(\mathcal{G}_{0}\right)\right|_{\mathcal{J}}$ is a Lie algebra with
$\mathfrak{i n s t r l}(\mathcal{J}) \subset \mathcal{L} \subset \mathfrak{s t r l}(\mathcal{J})$,
and $\mathcal{G} / I \cong T K K(\mathcal{J}, \mathcal{L})$ with $\mathcal{G}_{0} \supset I \triangleleft \mathcal{G}$.

2 Structurable algebras

Consider a \mathbb{Z}-grading

$$
\mathcal{G}=\mathcal{G}_{-2} \oplus \mathcal{G}_{-1} \oplus \mathcal{G}_{0} \oplus \mathcal{G}_{1} \oplus \mathcal{G}_{2} .
$$

Kantor's approach: Given a B_{1}-triple, work with the conservative product on \mathcal{G}_{1} :

$$
x \cdot y=[[x, f], y] .
$$

Example: \mathcal{A} associative with involution $a \rightarrow \bar{a}$,

$$
\begin{aligned}
\mathcal{S}= & \{s \in \mathcal{A}: \bar{s}=-s\} \\
\mathcal{G} & =\left\{\left[\begin{array}{ccc}
c & a & s \\
b & r & -\bar{a} \\
t & -\bar{b} & -\bar{c}
\end{array}\right]: a, b, c \in \mathcal{A}, r, s, t \in \mathcal{S}\right\}
\end{aligned}
$$

graded by lines parallel to the main diagonal,
so $\mathcal{G}_{ \pm 1} \longleftrightarrow \mathcal{A}$ and $\mathcal{G}_{ \pm 2} \longleftrightarrow \mathcal{S}$.

The conservative product on \mathcal{A} is $a \cdot b=a b+b a-b \bar{a}$, while the "nice" product is $a b$.

Allison's approach: Make use of the involution! $\mathcal{A}=$ unital nonassociative algebra with involution $x \rightarrow \bar{x}$, char $\neq 2,3$.

Set

$$
\begin{aligned}
V_{x, y}(z) & =U_{x, z}(y)=\{x y z\} \\
& =(x \bar{y}) z+(z \bar{y}) x-(z \bar{x}) y .
\end{aligned}
$$

We say $(\mathcal{A},-)$ is a structurable algebra if

$$
\begin{equation*}
\left[V_{x, y}, V_{z, w}\right]=V_{\{x y z\}, w}-V_{z,\{y x w\}} \tag{2}
\end{equation*}
$$

If the involution is trivial, then \mathcal{A} is commutative, and (2) is equivalent to the Jordan identity (1),
so a Jordan algebra is just a structurable algebra with trivial involution.

As before,

$$
\mathfrak{s t r l}(\mathcal{A},-)=\left\{A:\left[A, V_{x, y}\right]=V_{A x, y}+V_{x, B y}\right\}
$$

for some $B \in \mathfrak{g l}(\mathcal{A})$,
is a Lie algebra containing the ideal $V_{\mathcal{A}, \mathcal{A}}=\mathfrak{i n s t r l}(\mathcal{A},-)$, $B=A^{\varepsilon}$ is determined by A, and ε is an automorphism.

Let $\mathfrak{i n s t r l}(\mathcal{A},-) \subset \mathcal{L} \subset \mathfrak{s t r l}(\mathcal{A},-)$ be a subalgebra.
Form

$$
\mathcal{K}(\mathcal{A}, \mathcal{L})=\mathcal{S} \oplus \mathcal{A} \oplus \mathcal{L} \oplus \mathcal{A} \oplus \mathcal{S}
$$

Write $(t, y, A, x, s) \in \mathcal{S} \oplus \mathcal{A} \oplus \mathcal{L} \oplus \mathcal{A} \oplus \mathcal{S}=\mathcal{K}(\mathcal{A}, \mathcal{L})$ as

$$
\left[\begin{array}{cc}
A & L_{s} \\
L_{t} & A^{\varepsilon}
\end{array}\right] \oplus\left[\begin{array}{l}
x \\
y
\end{array}\right] \in \mathcal{K}_{\overline{0}} \oplus \mathcal{K}_{\overline{1}}
$$

and define a skew-symmetric product with

$$
\begin{aligned}
{[C, D] } & =C D-D C \\
{[C, u] } & =C u \\
{[u, v] } & =u * v-v * u
\end{aligned}
$$

for $C, D \in \mathcal{K}_{\overline{0}}$ and $u, v \in \mathcal{K}_{\overline{1}}$ where

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right] *\left[\begin{array}{c}
z \\
w
\end{array}\right]=\left[\begin{array}{cc}
V_{x, w} & U_{x, z} \\
U_{y, w} & V_{y, z}
\end{array}\right]
$$

$\mathcal{K}(\mathcal{A}, \mathcal{L})$ is \mathbb{Z}-graded Lie algebra and

$$
\left[\begin{array}{l}
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1
\end{array}\right],\left[\begin{array}{cc}
I d & 0 \\
0 & -I d
\end{array}\right]
$$

is a B_{1}-triple.

Write $\mathcal{K}(\mathcal{A})=\mathcal{K}(\mathcal{A}, \mathfrak{i n s t r l}(\mathcal{A},-))$.
Theorem (Allison): Let \mathcal{G} be a Lie algebra over a field of characteristic not 2,3 or 5 containing a B_{1}-triple e, f, h. If

$$
\mathcal{G}_{-2} \oplus \mathcal{G}_{-1} \oplus \mathcal{G}_{0} \oplus \mathcal{G}_{1} \oplus \mathcal{G}_{2}
$$

where \mathcal{G}_{k} is the k-eigenspace of $a d(h)$, then $\mathcal{A}=\mathcal{G}_{1}$ is a structurable algebra, $\mathcal{L}=\left.a d\left(\mathcal{G}_{0}\right)\right|_{\mathcal{A}}$ is a Lie algebra with

$$
\mathfrak{i n s t r l}(\mathcal{A},-) \subset \mathcal{L} \subset \mathfrak{s t r l}(\mathcal{A},-)
$$

and $\mathcal{G} / I \cong \mathcal{K}(\mathcal{A}, \mathcal{L})$ with $\mathcal{G}_{0} \supset I \triangleleft \mathcal{G}$.

3 Examples of structurable algebras

Theorem (Allison, Smirnov): Any central simple structurable algebra, $\operatorname{char}(k) \neq 2,3,5$, is isomorphic to one of the following:
(a) a Jordan algebra,
(b) an associative algebra with involution,
(c) a 2×2-matrix algebra $\left[\begin{array}{cc}k & \mathcal{J} \\ \mathcal{J} & k\end{array}\right]$ constructed from the Jordan algebra \mathcal{J} of an admissible cubic form with basepoint and a nonzero scalar, or a form of such an algebra, (related to Freudenthal triple systems)
(d) an algebra $\mathcal{A} \oplus \mathcal{W}$ constructed from a hermitian form on the associative \mathcal{A}-module \mathcal{W}
(e) a tensor product $\left(\mathcal{C}_{1} \otimes \mathcal{C}_{2},-\otimes-\right)$ of two composition algebras, or a form of such an algebra,
(f) a Kantor-Smirnov algebra $\mathcal{T}(\mathcal{C})$ constructed from an octonion algebra \mathcal{C}.
$\mathcal{K}\left(\mathcal{C}_{1} \otimes \mathcal{C}_{2}\right)$

4 Another Lie algebra construction

Example: \mathcal{A} associative with involution $a \rightarrow \bar{a}, n \geq 3$,

$$
\mathcal{G}=\left\{A \in \mathcal{A}_{n}: \bar{A}^{t}=-A\right\}
$$

Set $u_{i j}(a)=a e_{i j}-\bar{a} e_{j i}, i \neq j$, then

$$
\begin{align*}
u_{i j}(a) & =u_{j i}(-\bar{a}), \tag{3}\\
a & \rightarrow u_{i j}(a) \text { is linear, } \\
{\left[u_{i j}(a), u_{j k}(b)\right] } & =u_{i k}(a b) \text { for distinct } i, j, k, \\
{\left[u_{i j}(a), u_{k l}(b)\right] } & =0 \text { for distinct } i, j, k, l .
\end{align*}
$$

Theorem (Allison \& Faulkner): Let \mathcal{A} be a unital nonassociative algebra with involution $x \rightarrow \bar{x}$, char $\neq 2,3$. Let \mathcal{G} be the Lie algebra generated by symbols $u_{i j}(a)$, $i \neq j, a \in \mathcal{A}$, subject to the relations (3). Then

$$
u_{i j}(a)=0 \Longrightarrow a=0
$$

\Longleftrightarrow either $n \geq 4$ and \mathcal{A} is associative or $n=3$ and \mathcal{A} is structurable.

To prove the converse of the Theorem if $n=3$, we use the following construction:

Let \mathcal{A} be structurable. If $A \in \mathfrak{g l}(\mathcal{A})$, let $\bar{A}(x)=\overline{A(\bar{x})}$. We say $T=\left(T_{1}, T_{2}, T_{3}\right)$ is a Lie-related triple if

$$
\bar{T}_{i}(x y)=T_{j}(x) y+x T_{k}(y)
$$

for $x, y \in \mathcal{A},(i, j, k) \circlearrowleft(1,2,3)$. These form a Lie algebra $\mathfrak{t r i p}(\mathcal{A})$. Given $a, b \in \mathcal{A}$ and $(i, j, k) \circlearrowleft(1,2,3)$, an example is

$$
\begin{align*}
T_{i} & =L_{\bar{b}} L_{a}-L_{\bar{a}} L_{b} \tag{4}\\
T_{j} & =R_{\bar{b}} R_{a}-R_{\bar{a}} R_{b} \\
T_{k} & =R_{(\bar{a} b-\bar{b} a)}+L_{b} L_{\bar{a}}-L_{a} L_{\bar{b}}
\end{align*}
$$

These span an ideal $\mathfrak{i n t r i p}(\mathcal{A})$. For $i \neq j$, let $u_{i j}(\mathcal{A})$ be a copy of \mathcal{A} with $u_{i j}(a)=u_{j i}(-\bar{a})$. Let $\mathfrak{i n t r i p}(\mathcal{A}) \subset \mathcal{D} \subset \mathfrak{t r i p}(\mathcal{A})$
be a subalgebra. Form

$$
\mathcal{U}(\mathcal{A}, \mathcal{D})=\mathcal{D} \oplus u_{12}(\mathcal{A}) \oplus u_{23}(\mathcal{A}) \oplus u_{31}(\mathcal{A})
$$

with skew-symmetric product given by

$$
\begin{aligned}
{\left[u_{i j}(a), u_{j k}(b)\right] } & =u_{i k}(a b) \text { for distinct } i, j, k \\
{\left[u_{i j}(a), u_{i j}(b)\right] } & =T \text { as in }(4), \\
{\left[T, u_{i j}(a)\right] } & =u_{i j}\left(T_{k}(a)\right) \text { for }(i, j, k) \circlearrowleft(1,2,3) .
\end{aligned}
$$

$\mathcal{U}(\mathcal{A}, \mathcal{D})$ is a Lie algebra. Moreover, if the basefield is algebraically closed, then

$$
\mathcal{U}(\mathcal{A}):=\mathcal{U}(\mathcal{A}, \mathfrak{i n t r i p}(\mathcal{A})) \cong \mathcal{K}(\mathcal{A})
$$

In particular, $\mathcal{U}\left(\mathcal{C}_{1} \otimes \mathcal{C}_{2}\right)$ gives the magic square.

Let K be the Klein 4-group with $\kappa_{i}=(j k)(i 4)$ for $\{i, j, k\}=\{1,2,3\}$. Suppose S_{4} acts on a vector space \mathcal{V}. We have

$$
\mathcal{V}=\mathcal{V}_{0} \oplus \mathcal{V}_{1} \oplus \mathcal{V}_{2} \oplus \mathcal{V}_{3}
$$

where

$$
\begin{aligned}
& \mathcal{V}_{0}=\{v \in \mathcal{V}: \kappa(x)=x, \text { for } \kappa \in K\} \\
& \mathcal{V}_{i}=\left\{v \in \mathcal{V}: \kappa_{j}(x)=-x, \text { for } j \neq i\right\}
\end{aligned}
$$

Note $S_{4}=S_{3} \ltimes K$, so S_{3} permutes $\mathcal{V}_{1}, \mathcal{V}_{2}, \mathcal{V}_{3}$.
Theorem (Elduque \& Okubo): Let S_{4} act by automorphisms on a Lie algebra \mathcal{G}. If $u \in \mathcal{G}_{3}$ with

$$
(12)(a)=[u, a]
$$

for all $a \in \mathcal{G}_{1}$, then $\mathcal{A}=\mathcal{G}_{3}$ is a structurable algebra with product

$$
a b=[(23) a,(31) b],
$$

involution $\bar{a}=-(12) a$ and identity u. Moreover, if

$$
\mathcal{G}_{0}^{\prime}=\left.a d\left(\mathcal{G}_{0}\right)\right|_{\mathcal{G}_{1} \oplus \mathcal{G}_{2} \oplus \mathcal{G}_{3}},
$$

then

$$
\mathfrak{i n t r i p}(\mathcal{A}) \subset \mathcal{G}_{0}^{\prime} \subset \mathfrak{t r i p}(\mathcal{A})
$$

and $\mathcal{G} / I \cong \mathcal{U}\left(\mathcal{A}, \mathcal{G}_{0}^{\prime}\right)$ with $\mathcal{G}_{0} \supset I \triangleleft \mathcal{G}$.
Idea of proof: Set $u_{i j}(a)=\sigma(a)$ for $a \in \mathcal{A}=\mathcal{G}_{3}$ where $\sigma \in S_{3}$ with $\sigma: 1,2 \rightarrow i, j$. Show $u_{i j}(a)$ satisfies (3).

5 Symmetric spaces

Following Loos, we recall that a symmetric space is a manifold M with a product $M \times M \rightarrow M$, (written as $S_{x} y=x \cdot y$ and called reflection) such that

$$
\begin{aligned}
& S_{x}^{2}=i d \\
& S_{x} S_{y} S_{x}=S_{S_{x} y}
\end{aligned}
$$

x is an isolated fixed point of S_{x}.
The group $G(M)$ generated by all $S_{x} S_{y}$ is the group of displacements.

Let $\mathcal{G}(M)$ be the Lie algebra of $G(M) . \quad S_{x}$ induces an automorphism S_{x} of $\mathcal{G}(M)$.

The tangent space at x can be identified with the (-1) eigenspace $\mathcal{G}(M)_{-1}$ of S_{x}.

This is a Lie triple system (closed under [[,],]) and
is the negative of the curvature tensor of the canonical connection.

Example 1: $\quad M=S^{2}$ is the unit sphere and S_{x} is rotation by 180° about x.

In this case,

$$
\begin{aligned}
G(M) & =S O_{3}(\mathbb{R}), \mathcal{G}(M)=\mathfrak{s o}_{3}(\mathbb{R}) \\
T_{e_{3}}(M) & =\mathfrak{s o}_{3}(\mathbb{R})_{-1}=u_{13}(\mathbb{R}) \oplus u_{23}(\mathbb{R})
\end{aligned}
$$

Example 2: $M=E^{2}$ is the real projective (elliptic) plane; i.e., the sphere with antipodal points identified. $S_{x}, G(M)$, etc. are the same.

Example 3: G a connected Lie group with an automorphism σ of order 2. Let G^{σ} be the fixed points of σ and $G_{0}^{\sigma} \subset K \subset G^{\sigma}$. Let $M=G / K$ with

$$
S_{x K}=L_{x} \sigma L_{x^{-1}} .
$$

We say that a symmetric space M is rotational if
(1) $\quad M$ has a symmetric subspace $N \cong S^{2}$ or E^{2},
(2) if $x, y, z \in N$ with $y, z \perp x$ and $S_{y} \neq S_{z}$, then x is an isolated fixed point of $S_{y} S_{z}$.

Theorem (Faulkner): A connected symmetric space is rotational \Longleftrightarrow its Lie triple system is isomorphic to

$$
u_{13}(\mathcal{A}) \oplus u_{23}(\mathcal{A})
$$

for some real structurable algebra \mathcal{A}.

Note: locally the symmetric space has coordinates $\{(a, b)$: $a, b \in \mathcal{A}\}$

Idea of Proof: The subgroup $\tilde{G}(N)$ of $G(M)$ generated by all $S_{x} S_{y}, x, y \in N$ is isomorphic to $G(N)=$ $\mathrm{SO}_{3}(\mathbb{R})$. Thus, $\mathrm{SO}_{3}(\mathbb{R})$ acts as automorphisms of $\mathcal{G}(M)$. The subgroup of rotations of the cube is isomorphic to S_{4} (acting on the 4 diagonals).
$\mathcal{U}\left(\mathcal{C}_{1} \otimes \mathcal{C}_{2}\right) / \operatorname{Lie}(K)$ with $\operatorname{dim}\left(\mathcal{C}_{1}\right)=8$ is given by $\operatorname{dim}\left(\mathcal{C}_{2}\right)$

1	2	4	8
F_{4} / B_{4}	$E_{6} /\left(D_{5} \oplus \mathbb{R}\right)$	$E_{7} /\left(D_{6} \oplus A_{1}\right)$	E_{8} / D_{8}

6 Kantor-Smirnov algebras

Let \mathcal{C} be a composition algebra. Let τ be the automorphism of $\mathcal{C} \otimes \mathcal{C}$ with $\tau: a \otimes b \rightarrow b \otimes a$. Let $(\mathcal{C} \otimes \mathcal{C})^{\tau}$ be the subalgebra of fixed points of τ.

We find an ideal of dimension 1 in $(\mathcal{C} \otimes \mathcal{C})^{\tau}$ as follows:

It is easy to check that the linear map

$$
\varphi: \mathcal{C} \otimes \mathcal{C} \rightarrow \operatorname{End}(\mathcal{C})
$$

with

$$
\varphi(a \otimes b)(x)=a n(b, x)
$$

is an isomorphism of $(\mathcal{C} \otimes \mathcal{C})$-bimodules with involution, where

$$
\begin{aligned}
(a \otimes b) \cdot A & =L_{a} A L_{\bar{b}} \\
A \cdot(a \otimes b) & =R_{a} A R_{\bar{b}} \\
\bar{A}(x) & =\overline{A(\bar{x})}
\end{aligned}
$$

Moreover, $* \circ \varphi=\varphi \circ \tau$ where $n(A x, y)=n\left(x, A^{*} y\right)$.
Thus,
$\varphi:(\mathcal{C} \otimes \mathcal{C})^{\tau} \rightarrow \mathcal{H}(\operatorname{End}(\mathcal{C}))=\left\{A \in \operatorname{End}(\mathcal{C}): A^{*}=A\right\}$ is an isomorphism of $(\mathcal{C} \otimes \mathcal{C})^{\tau}$-bimodules with involution.

Since

$$
\begin{aligned}
(a \otimes a) \cdot I d & =L_{a} L_{\bar{a}}=n(a) I d=I d \cdot(a \otimes a) \\
\overline{I d} & =I d
\end{aligned}
$$

$k I d$ is a submodule of $\mathcal{H}(\operatorname{End}(\mathcal{C}))$
and $\varphi^{-1}(k I d)$ is an ideal of $(\mathcal{C} \otimes \mathcal{C})^{\tau}$.

Let $\mathcal{T}(\mathcal{C})=(\mathcal{C} \otimes \mathcal{C})^{\tau} / \varphi^{-1}(k I d)$.

$\operatorname{dim} \mathcal{C}$	$\mathcal{T}(\mathcal{C})$	$\mathcal{U}(\mathcal{T}(\mathcal{C}))$	Lie (K)
1	0	0	0
2	$\cong(\mathcal{C},-)$	A_{2}	$\mathbb{R} \oplus A_{1}$
4	$\cong(\operatorname{End}(\mathcal{S}(\mathcal{C})), *)$	B_{4}	$A_{1} \oplus A_{2}$
8	Kantor-Smirnov	E_{7}	A_{7}

