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1 Jordan algebras

Let J be a (linear) Jordan algebra = commutative, unital
nonassociative algebra in char 6= 2 with

(x2 � y) � x = x2 � (y � x): (1)

Now [Lx; Ly] 2 der(J ) where Lx(y) = x � y.

Also, [D;Lx] = LDx for D 2 der(J ). Thus,

inder(J ) = [LJ ; LJ ]

is an ideal of der(J ), and

strl(J ) = LJ � der(J )

is a Lie algebra called the structure Lie algebra of J with
ideal

instrl(J ) = LJ � [LJ ; LJ ]:

Note

" : Lx +D ! �Lx +D



is an automorphism of strl(J ).

De�ne

Vx;y = Lx�y + [Lx; Ly]:

We see Vx;1 = Lx, so VJ ;J = instrl(J ).

Also, if A 2 gl(J ), then A 2 strl(J )()

[A; Vx;y] = VAx;y + Vx;By;

for some B 2 gl(J ) and then B = A".

Let J+;J� be two copies of J and let

instrl(J ) � L � strl(J )

be a subalgebra. The Tits-Kantor-Koecher Lie algebra
is

TKK(J ;L) = J� � L� J+



with skew-symmetric product given by

[J �;J �] = 0;

[x+; y�] = Vx;y;

[A;B] = AB �BA;
[A; x+] = (Ax)+;

[A; y�] = (A"y)�

for � = �, x+ 2 J+, y� 2 J�, A;B 2 L.

Example: J = Albert algebra

= 27-dimensional exceptional Jordan algebra

der(J ) is a form of F4

strl(J ) is a form of E6 � k

TKK(J ; strl(J )) is a form of E7



Also note e = 1+, f = 1�, and h = V1;1 form a B1-
triple:

[e; f ] = h;

[h; e] = e;

[h; f ] = �f:

I.e., the multiplication is like264 0 1 0
0 0 �1
0 0 0

375 ;
264 0 0 0
1 0 0
0 �1 0

375 ;
264 1 0 0
0 0 0
0 0 �1

375 2 B1
rather than like the sl2-triple"

0 1
0 0

#
;

"
0 0
1 0

#
;

"
1 0
0 �1

#
2 sl2

e; f; h is a B1 triple () e; 2f; 2h is a sl2-triple



Theorem (Tits, Kantor, Koecher):Let G be a Lie algebra
over a �eld of characteristic not 2 or 3 containing a B1-
triple e; f; h. If

G = G�1 � G0 � G1
where Gk is the k-eigenspace of ad(h), then J = G1
with product x � y = [[x; f ]; y] is a Jordan algebra, L =
ad(G0) jJ is a Lie algebra with

instrl(J ) � L � strl(J );

and G=I �= TKK(J ;L) with G0 � I C G.

2 Structurable algebras

Consider a Z-grading

G = G�2 � G�1 � G0 � G1 � G2:



Kantor�s approach: Given a B1-triple, work with the con-
servative product on G1:

x � y = [[x; f ]; y]:

Example: A associative with involution a! �a;

S = fs 2 A : �s = �sg

G =

8><>:
264 c a s
b r ��a
t ��b ��c

375 : a; b; c 2 A; r; s; t 2 S
9>=>;

graded by lines parallel to the main diagonal,

so G�1  ! A and G�2  ! S.

The conservative product on A is a � b = ab+ ba� b�a,
while the "nice" product is ab:

Allison�s approach: Make use of the involution! A =

unital nonassociative algebra with involution x ! �x,
char 6= 2; 3.



Set

Vx;y(z) = Ux;z(y) = fxyzg
= (x�y)z + (z�y)x� (z�x)y:

We say (A;�) is a structurable algebra if

[Vx;y; Vz;w] = Vfxyzg;w � Vz;fyxwg: (2)

If the involution is trivial, then A is commutative, and
(2) is equivalent to the Jordan identity (1),

so a Jordan algebra is just a structurable algebra with
trivial involution.

As before,

strl(A;�) = fA : [A; Vx;y] = VAx;y + Vx;Byg

for some B 2 gl(A);

is a Lie algebra containing the ideal VA;A = instrl(A;�),
B = A" is determined by A,and " is an automorphism.



Let instrl(A;�) � L � strl(A;�) be a subalgebra.
Form

K(A;L) = S �A� L�A� S:

Write (t; y; A; x; s) 2 S �A�L�A� S = K(A;L)
as "

A Ls
Lt A"

#
�
"
x
y

#
2 K�0 �K�1

and de�ne a skew-symmetric product with

[C;D] = CD �DC;
[C; u] = Cu;

[u; v] = u � v � v � u

for C;D 2 K�0 and u; v 2 K�1 where"
x
y

#
�
"
z
w

#
=

"
Vx;w Ux;z
Uy;w Vy;z

#
K(A;L) is Z-graded Lie algebra and"

1
0

#
;

"
0
1

#
;

"
Id 0
0 �Id

#
is a B1-triple.



Write K(A) = K(A; instrl(A;�)).

Theorem (Allison): Let G be a Lie algebra over a �eld of
characteristic not 2; 3 or 5 containing a B1-triple e; f; h.
If

G�2 � G�1 � G0 � G1 � G2
where Gk is the k-eigenspace of ad(h), then A = G1 is
a structurable algebra, L = ad(G0) jA is a Lie algebra
with

instrl(A;�) � L � strl(A;�)

and G=I �= K(A;L) with G0 � I C G.

3 Examples of structurable algebras

Theorem (Allison, Smirnov): Any central simple struc-
turable algebra, char(k) 6= 2; 3; 5, is isomorphic to one
of the following:



(a) a Jordan algebra,

(b) an associative algebra with involution,

(c) a 2 � 2-matrix algebra
"
k J
J k

#
constructed from

the Jordan algebra J of an admissible cubic form with
basepoint and a nonzero scalar, or a form of such an
algebra, (related to Freudenthal triple systems)

(d) an algebra A�W constructed from a hermitian form
on the associative A-module W

(e) a tensor product (C1
C2;�
�) of two composition
algebras, or a form of such an algebra,

(f) a Kantor-Smirnov algebra T (C) constructed from an
octonion algebra C.



K(C1 
 C2) dim(C2)

dim(C1)

1 2 4 8
1 A1 A2 C3 F4
2 A2 A2 �A2 A5 E6
4 C3 A5 D6 E7
8 F4 E6 E7 E8

4 Another Lie algebra construction

Example: A associative with involution a! �a, n � 3,

G = fA 2 An : �At = �Ag

Set uij(a) = aeij � �aeji, i 6= j, then

uij(a) = uji(��a); (3)

a ! uij(a) is linear,

[uij(a); ujk(b)] = uik(ab) for distinct i; j; k;

[uij(a); ukl(b)] = 0 for distinct i; j; k; l:



Theorem (Allison & Faulkner): Let A be a unital nonas-
sociative algebra with involution x ! �x, char 6= 2; 3.
Let G be the Lie algebra generated by symbols uij(a),
i 6= j, a 2 A, subject to the relations (3). Then

uij(a) = 0 =) a = 0;

() either n � 4 and A is associative or n = 3 and A
is structurable.

To prove the converse of the Theorem if n = 3, we use
the following construction:

Let A be structurable. If A 2 gl(A), let �A(x) = A(�x).
We say T = (T1; T2; T3) is a Lie-related triple if

�Ti(xy) = Tj(x)y + xTk(y)

for x; y 2 A, (i; j; k) 	 (1; 2; 3). These form a Lie al-
gebra trip(A). Given a; b 2 A and (i; j; k) 	 (1; 2; 3),
an example is

Ti = L�bLa � L�aLb; (4)
Tj = R�bRa �R�aRb;
Tk = R(�ab��ba) + LbL�a � LaL�b



These span an ideal intrip(A). For i 6= j, let uij(A)
be a copy of A with uij(a) = uji(��a). Let

intrip(A) � D � trip(A)
be a subalgebra. Form

U(A;D) = D � u12(A)� u23(A)� u31(A)
with skew-symmetric product given by

[uij(a); ujk(b)] = uik(ab) for distinct i; j; k;

[uij(a); uij(b)] = T as in (4),

[T; uij(a)] = uij(Tk(a)) for (i; j; k) 	 (1; 2; 3):
U(A;D) is a Lie algebra. Moreover, if the base�eld is
algebraically closed, then

U(A) := U(A; intrip(A)) �= K(A):
In particular, U(C1 
 C2) gives the magic square.

Let K be the Klein 4-group with �i = (jk)(i4) for
fi; j; kg = f1; 2; 3g. Suppose S4 acts on a vector space
V. We have

V = V0 � V1 � V2 � V3;



where

V0 = fv 2 V : �(x) = x, for � 2 Kg;
Vi = fv 2 V : �j(x) = �x, for j 6= ig.

Note S4 = S3 nK, so S3 permutes V1;V2;V3.

Theorem (Elduque & Okubo): Let S4 act by automor-
phisms on a Lie algebra G. If u 2 G3 with

(12)(a) = [u; a]

for all a 2 G1, then A = G3 is a structurable algebra
with product

ab = [(23)a; (31)b];

involution �a = �(12)a and identity u. Moreover, if

G00 = ad(G0) jG1�G2�G3;
then

intrip(A) � G00 � trip(A)
and G=I �= U(A;G00) with G0 � I C G.

Idea of proof: Set uij(a) = �(a) for a 2 A = G3
where � 2 S3 with � : 1; 2 ! i; j. Show uij(a)
satis�es (3).



5 Symmetric spaces

Following Loos, we recall that a symmetric space is a
manifold M with a product M �M ! M , (written as
Sxy = x � y and called re�ection) such that

S2x = id;

SxSySx = SSxy;

x is an isolated �xed point of Sx:

The group G(M) generated by all SxSy is the group of
displacements.

Let G(M) be the Lie algebra of G(M). Sx induces an
automorphism Sx of G(M).

The tangent space at x can be identi�ed with the (�1)-
eigenspace G(M)�1 of Sx.

This is a Lie triple system (closed under [[; ]; ]) and



is the negative of the curvature tensor of the canonical
connection.

Example 1: M = S2 is the unit sphere and Sx is
rotation by 180� about x.

In this case,

G(M) = SO3(R);G(M) = so3(R);
Te3(M) = so3(R)�1 = u13(R)� u23(R).

Example 2: M = E2 is the real projective (elliptic)
plane; i.e., the sphere with antipodal points identi�ed.
Sx, G(M), etc. are the same.



Example 3: G a connected Lie group with an automor-
phism � of order 2. Let G� be the �xed points of � and
G�0 � K � G�. Let M = G=K with

SxK = Lx�Lx�1:

We say that a symmetric space M is rotational if

(1) M has a symmetric subspace N �= S2 or E2;
(2) if x; y; z 2 N with y; z ? x and Sy 6= Sz,

then x is an isolated �xed point of SySz:

Theorem (Faulkner): A connected symmetric space is
rotational () its Lie triple system is isomorphic to

u13(A)� u23(A)

for some real structurable algebra A.

Note: locally the symmetric space has coordinates f(a; b) :
a; b 2 A}



Idea of Proof: The subgroup ~G(N) of G(M) gener-
ated by all SxSy, x; y 2 N is isomorphic to G(N) =
SO3(R). Thus, SO3(R) acts as automorphisms of
G(M). The subgroup of rotations of the cube is isomor-
phic to S4 (acting on the 4 diagonals).

U(C1 
 C2)=Lie(K) with dim(C1) = 8 is given by

dim(C2)
1 2 4 8

F4=B4 E6=(D5 � R) E7=(D6 �A1) E8=D8

6 Kantor-Smirnov algebras

Let C be a composition algebra. Let � be the automor-
phism of C 
 C with � : a
 b! b
 a. Let (C 
 C)�
be the subalgebra of �xed points of � .

We �nd an ideal of dimension 1 in (C 
 C)� as follows:



It is easy to check that the linear map

' : C 
 C ! End(C)

with

'(a
 b)(x) = an(b; x)

is an isomorphism of (C 
 C)-bimodules with involution,
where

(a
 b) �A = LaAL�b;

A � (a
 b) = RaAR�b;

�A(x) = A(�x):

Moreover, � � ' = ' � � where n(Ax; y) = n(x;A�y).
Thus,

' : (C
C)� ! H(End(C)) = fA 2 End(C) : A� = Ag

is an isomorphism of (C
C)� -bimodules with involution.

Since

(a
 a) � Id = LaL�a = n(a)Id = Id � (a
 a);
Id = Id;



kId is a submodule of H(End(C))

and '�1(kId) is an ideal of (C 
 C)� .

Let T (C) = (C 
 C)�='�1(kId).

dim C T (C) U(T (C)) Lie(K)
1 0 0 0
2 �= (C;�) A2 R�A1
4 �= (End(S(C)); �) B4 A1 �A2
8 Kantor-Smirnov E7 A7


