Structurable Algebras and the Magic Square

John Faulkner University of Virginia

October 19, 2012

1 Jordan algebras

Let \mathcal{J} be a (linear) Jordan algebra = commutative, unital nonassociative algebra in $char \neq 2$ with

$$(x^2 \cdot y) \cdot x = x^2 \cdot (y \cdot x). \tag{1}$$

Now $[L_x, L_y] \in \mathfrak{der}(\mathcal{J})$ where $L_x(y) = x \cdot y$.

Also, $[D, L_x] = L_{Dx}$ for $D \in \mathfrak{der}(\mathcal{J})$. Thus, $\mathfrak{inder}(\mathcal{J}) = [L_{\mathcal{J}}, L_{\mathcal{J}}]$

is an ideal of $\mathfrak{der}(\mathcal{J})$, and

$$\mathfrak{strl}(\mathcal{J}) = L_{\mathcal{J}} \oplus \mathfrak{der}(\mathcal{J})$$

is a Lie algebra called the structure Lie algebra of ${\mathcal J}$ with ideal

$$\mathfrak{instrl}(\mathcal{J}) = L_{\mathcal{J}} \oplus [L_{\mathcal{J}}, L_{\mathcal{J}}].$$

Note

$$\varepsilon: L_x + D \to -L_x + D$$

is an automorphism of $\mathfrak{strl}(\mathcal{J})$.

Define

$$V_{x,y} = L_{x \cdot y} + [L_x, L_y].$$

We see $V_{x,1} = L_x$, so $V_{\mathcal{J},\mathcal{J}} = \mathfrak{instrl}(\mathcal{J}).$

Also, if $A \in \mathfrak{gl}(\mathcal{J})$, then $A \in \mathfrak{strl}(\mathcal{J}) \iff$ $[A, V_{x,y}] = V_{Ax,y} + V_{x,By}$, for some $B \in \mathfrak{gl}(\mathcal{J})$ and then $B = A^{\varepsilon}$.

Let $\mathcal{J}^+, \mathcal{J}^-$ be two copies of $\mathcal J$ and let

$$\mathfrak{instrl}(\mathcal{J}) \subset \mathcal{L} \subset \mathfrak{strl}(\mathcal{J})$$

be a subalgebra. The Tits-Kantor-Koecher Lie algebra is

$$TKK(\mathcal{J},\mathcal{L}) = \mathcal{J}^- \oplus \mathcal{L} \oplus \mathcal{J}^+$$

with skew-symmetric product given by

$$\begin{aligned} [\mathcal{J}^{\sigma}, \mathcal{J}^{\sigma}] &= 0, \\ [x^+, y^-] &= V_{x,y}, \\ [A, B] &= AB - BA, \\ [A, x^+] &= (Ax)^+, \\ [A, y^-] &= (A^{\varepsilon}y)^- \end{aligned}$$
for $\sigma = \pm, x^+ \in \mathcal{J}^+, y^- \in \mathcal{J}^-, A, B \in \mathcal{L}. \end{aligned}$

Example: $\mathcal{J} = \mathsf{Albert} \mathsf{ algebra}$

= 27-dimensional exceptional Jordan algebra $\operatorname{der}(\mathcal{J})$ is a form of F_4 $\operatorname{strl}(\mathcal{J})$ is a form of $E_6 \oplus k$ $TKK(\mathcal{J}, \operatorname{strl}(\mathcal{J}))$ is a form of E_7 Also note $e = 1^+$, $f = 1^-$, and $h = V_{1,1}$ form a B_1 -triple:

$$[e, f] = h,$$

 $[h, e] = e,$
 $[h, f] = -f.$

I.e., the multiplication is like

$$\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & -1 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & -1 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix} \in B_1$$

rather than like the $\mathfrak{sl}_2\text{-triple}$

$$\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \in \mathfrak{sl}_2$$

e, f, h is a B_1 triple $\iff e, 2f, 2h$ is a \mathfrak{sl}_2 -triple

Theorem (Tits, Kantor, Koecher):Let \mathcal{G} be a Lie algebra over a field of characteristic not 2 or 3 containing a B_1 triple e, f, h. If

$$\mathcal{G}=\mathcal{G}_{-1}\oplus \mathcal{G}_0\oplus \mathcal{G}_1$$

where \mathcal{G}_k is the *k*-eigenspace of ad(h), then $\mathcal{J} = \mathcal{G}_1$ with product $x \cdot y = [[x, f], y]$ is a Jordan algebra, $\mathcal{L} = ad(\mathcal{G}_0) \mid_{\mathcal{J}}$ is a Lie algebra with

 $\mathfrak{instrl}(\mathcal{J}) \subset \mathcal{L} \subset \mathfrak{strl}(\mathcal{J}),$

and $\mathcal{G}/I \cong TKK(\mathcal{J}, \mathcal{L})$ with $\mathcal{G}_0 \supset I \lhd \mathcal{G}$.

2 Structurable algebras

Consider a \mathbb{Z} -grading

$$\mathcal{G} = \mathcal{G}_{-2} \oplus \mathcal{G}_{-1} \oplus \mathcal{G}_0 \oplus \mathcal{G}_1 \oplus \mathcal{G}_2.$$

Kantor's approach: Given a B_1 -triple, work with the *conservative product* on \mathcal{G}_1 :

$$x \cdot y = [[x, f], y].$$

Example: \mathcal{A} associative with involution $a \rightarrow \overline{a}$,

$$\mathcal{S} = \{s \in \mathcal{A} : \overline{s} = -s\}$$
$$\mathcal{G} = \left\{ \begin{bmatrix} c & a & s \\ b & r & -\overline{a} \\ t & -\overline{b} & -\overline{c} \end{bmatrix} : a, b, c \in \mathcal{A}, r, s, t \in \mathcal{S} \right\}$$

graded by lines parallel to the main diagonal,

so
$$\mathcal{G}_{\pm 1} \longleftrightarrow \mathcal{A}$$
 and $\mathcal{G}_{\pm 2} \longleftrightarrow \mathcal{S}$.

The conservative product on \mathcal{A} is $a \cdot b = ab + ba - b\overline{a}$, while the "nice" product is ab.

Allison's approach: Make use of the involution! $\mathcal{A} =$ unital nonassociative algebra with involution $x \rightarrow \bar{x}$, $char \neq 2, 3$. Set

$$V_{x,y}(z) = U_{x,z}(y) = \{xyz\}$$

= $(x\overline{y})z + (z\overline{y})x - (z\overline{x})y.$
We say $(\mathcal{A}, -)$ is a structurable algebra if
 $[V_{x,y}, V_{z,w}] = V_{\{xyz\},w} - V_{z,\{yxw\}}.$ (2)

If the involution is trivial, then \mathcal{A} is commutative, and (2) is equivalent to the Jordan identity (1),

so a Jordan algebra is just a structurable algebra with trivial involution.

As before,

 $\mathfrak{strl}(\mathcal{A}, -) = \{A : [A, V_{x,y}] = V_{Ax,y} + V_{x,By}\}$ for some $B \in \mathfrak{gl}(\mathcal{A})$,

is a Lie algebra containing the ideal $V_{\mathcal{A},\mathcal{A}} = \mathfrak{instrl}(\mathcal{A},-)$, $B = A^{\varepsilon}$ is determined by A, and ε is an automorphism. Let $\mathfrak{instrl}(\mathcal{A},-) \subset \mathcal{L} \subset \mathfrak{strl}(\mathcal{A},-)$ be a subalgebra. Form

$$\mathcal{K}(\mathcal{A},\mathcal{L}) = \mathcal{S} \oplus \mathcal{A} \oplus \mathcal{L} \oplus \mathcal{A} \oplus \mathcal{S}.$$

Write $(t, y, A, x, s) \in S \oplus A \oplus L \oplus A \oplus S = \mathcal{K}(A, L)$ as

$$\begin{bmatrix} A & L_s \\ L_t & A^{\varepsilon} \end{bmatrix} \oplus \begin{bmatrix} x \\ y \end{bmatrix} \in \mathcal{K}_{\overline{0}} \oplus \mathcal{K}_{\overline{1}}$$

and define a skew-symmetric product with

$$[C,D] = CD - DC,$$

$$[C,u] = Cu,$$

$$[u,v] = u * v - v * u$$

for $C,D\in \mathcal{K}_{\bar{\mathbf{0}}}$ and $u,v\in \mathcal{K}_{\bar{\mathbf{1}}}$ where

$$\left[\begin{array}{c} x\\ y\end{array}\right]*\left[\begin{array}{c} z\\ w\end{array}\right]=\left[\begin{array}{cc} V_{x,w} & U_{x,z}\\ U_{y,w} & V_{y,z}\end{array}\right]$$

 $\mathcal{K}(\mathcal{A},\mathcal{L})$ is \mathbb{Z} -graded Lie algebra and

$$\left[\begin{array}{c}1\\0\end{array}\right], \left[\begin{array}{c}0\\1\end{array}\right], \left[\begin{array}{c}Id&0\\0&-Id\end{array}\right]$$

is a B_1 -triple.

Write $\mathcal{K}(\mathcal{A}) = \mathcal{K}(\mathcal{A}, \mathfrak{instrl}(\mathcal{A}, -)).$

Theorem (Allison): Let \mathcal{G} be a Lie algebra over a field of characteristic not 2, 3 or 5 containing a B_1 -triple e, f, h. If

$$\mathcal{G}_{-2} \oplus \mathcal{G}_{-1} \oplus \mathcal{G}_0 \oplus \mathcal{G}_1 \oplus \mathcal{G}_2$$

where \mathcal{G}_k is the *k*-eigenspace of ad(h), then $\mathcal{A} = \mathcal{G}_1$ is a structurable algebra, $\mathcal{L} = ad(\mathcal{G}_0) \mid_{\mathcal{A}}$ is a Lie algebra with

$$\mathfrak{instrl}(\mathcal{A},-)\subset\mathcal{L}\subset\mathfrak{strl}(\mathcal{A},-)$$

and $\mathcal{G}/I \cong \mathcal{K}(\mathcal{A}, \mathcal{L})$ with $\mathcal{G}_0 \supset I \lhd \mathcal{G}$.

3 Examples of structurable algebras

Theorem (Allison, Smirnov): Any central simple structurable algebra, $char(k) \neq 2, 3, 5$, is isomorphic to one of the following:

(a) a Jordan algebra,

(b) an associative algebra with involution,

(c) a 2 × 2-matrix algebra $\begin{bmatrix} k & \mathcal{J} \\ \mathcal{J} & k \end{bmatrix}$ constructed from the Jordan algebra \mathcal{J} of an admissible cubic form with basepoint and a nonzero scalar, or a form of such an algebra, (related to Freudenthal triple systems)

(d) an algebra $\mathcal{A} \oplus \mathcal{W}$ constructed from a hermitian form on the associative \mathcal{A} -module \mathcal{W}

(e) a tensor product $(C_1 \otimes C_2, - \otimes -)$ of two composition algebras, or a form of such an algebra,

(f) a Kantor-Smirnov algebra $\mathcal{T}(\mathcal{C})$ constructed from an octonion algebra \mathcal{C} .

4 Another Lie algebra construction

Example: \mathcal{A} associative with involution $a \rightarrow \overline{a}$, $n \geq 3$,

$$\mathcal{G} = \{A \in \mathcal{A}_n : \overline{A}^t = -A\}$$

Set $u_{ij}(a) = ae_{ij} - \overline{a}e_{ji}, i \neq j$, then
 $u_{ij}(a) = u_{ji}(-\overline{a}),$ (3)
 $a \rightarrow u_{ij}(a)$ is linear,
 $[u_{ij}(a), u_{jk}(b)] = u_{ik}(ab)$ for distinct $i, j, k, [u_{ij}(a), u_{kl}(b)] = 0$ for distinct i, j, k, l .

Theorem (Allison & Faulkner): Let \mathcal{A} be a unital nonassociative algebra with involution $x \to \overline{x}$, $char \neq 2, 3$. Let \mathcal{G} be the Lie algebra generated by symbols $u_{ij}(a)$, $i \neq j, a \in \mathcal{A}$, subject to the relations (3). Then

$$u_{ij}(a) = \mathbf{0} \Longrightarrow a = \mathbf{0},$$

 \iff either $n \ge 4$ and \mathcal{A} is associative or n = 3 and \mathcal{A} is structurable.

To prove the converse of the Theorem if n = 3, we use the following construction:

Let \mathcal{A} be structurable. If $A \in \mathfrak{gl}(\mathcal{A})$, let $\overline{A}(x) = \overline{A(\overline{x})}$. We say $T = (T_1, T_2, T_3)$ is a *Lie-related triple* if

$$\bar{T}_i(xy) = T_j(x)y + xT_k(y)$$

for $x, y \in A$, $(i, j, k) \bigcirc (1, 2, 3)$. These form a Lie algebra trip(A). Given $a, b \in A$ and $(i, j, k) \bigcirc (1, 2, 3)$, an example is

$$T_{i} = L_{\overline{b}}L_{a} - L_{\overline{a}}L_{b}, \qquad (4)$$

$$T_{j} = R_{\overline{b}}R_{a} - R_{\overline{a}}R_{b},$$

$$T_{k} = R_{(\overline{a}b - \overline{b}a)} + L_{b}L_{\overline{a}} - L_{a}L_{\overline{b}}$$

These span an ideal $intrip(\mathcal{A})$. For $i \neq j$, let $u_{ij}(\mathcal{A})$ be a copy of \mathcal{A} with $u_{ij}(a) = u_{ji}(-\bar{a})$. Let

$$\operatorname{intrip}(\mathcal{A}) \subset \mathcal{D} \subset \operatorname{trip}(\mathcal{A})$$

be a subalgebra. Form

$$\mathcal{U}(\mathcal{A},\mathcal{D}) = \mathcal{D} \oplus u_{12}(\mathcal{A}) \oplus u_{23}(\mathcal{A}) \oplus u_{31}(\mathcal{A})$$

with skew-symmetric product given by

$$egin{array}{rll} [u_{ij}(a), u_{jk}(b)] &= u_{ik}(ab) ext{ for distinct } i, j, k, \ [u_{ij}(a), u_{ij}(b)] &= T ext{ as in (4),} \ [T, u_{ij}(a)] &= u_{ij}(T_k(a)) ext{ for } (i, j, k) \circlearrowleft (1, 2, 3). \end{array}$$

 $\mathcal{U}(\mathcal{A}, \mathcal{D})$ is a Lie algebra. Moreover, if the basefield is algebraically closed, then

$$\mathcal{U}(\mathcal{A}):=\mathcal{U}(\mathcal{A},\mathfrak{intrip}(\mathcal{A}))\cong\mathcal{K}(\mathcal{A}).$$

In particular, $\mathcal{U}(\mathcal{C}_1 \otimes \mathcal{C}_2)$ gives the magic square.

Let K be the Klein 4-group with $\kappa_i = (jk)(i4)$ for $\{i, j, k\} = \{1, 2, 3\}$. Suppose S_4 acts on a vector space \mathcal{V} . We have

$$\mathcal{V} = \mathcal{V}_0 \oplus \mathcal{V}_1 \oplus \mathcal{V}_2 \oplus \mathcal{V}_3,$$

where

$$\mathcal{V}_0 = \{ v \in \mathcal{V} : \kappa(x) = x, \text{ for } \kappa \in K \}, \\ \mathcal{V}_i = \{ v \in \mathcal{V} : \kappa_j(x) = -x, \text{ for } j \neq i \}.$$

Note $S_4 = S_3 \ltimes K$, so S_3 permutes $\mathcal{V}_1, \mathcal{V}_2, \mathcal{V}_3$.

Theorem (Elduque & Okubo): Let S_4 act by automorphisms on a Lie algebra \mathcal{G} . If $u \in \mathcal{G}_3$ with

$$(12)(a) = [u, a]$$

for all $a \in \mathcal{G}_1$, then $\mathcal{A} = \mathcal{G}_3$ is a structurable algebra with product

$$ab = [(23)a, (31)b],$$

involution $\bar{a} = -(12)a$ and identity u. Moreover, if

$$\mathcal{G}_0' = ad(\mathcal{G}_0) \mid_{\mathcal{G}_1 \oplus \mathcal{G}_2 \oplus \mathcal{G}_3},$$

then

$$\operatorname{intrip}(\mathcal{A}) \subset \mathcal{G}_0' \subset \operatorname{trip}(\mathcal{A})$$

and $\mathcal{G}/I \cong \mathcal{U}(\mathcal{A}, \mathcal{G}'_0)$ with $\mathcal{G}_0 \supset I \lhd \mathcal{G}$.

Idea of proof: Set $u_{ij}(a) = \sigma(a)$ for $a \in \mathcal{A} = \mathcal{G}_3$ where $\sigma \in S_3$ with $\sigma : 1, 2 \rightarrow i, j$. Show $u_{ij}(a)$ satisfies (3).

5 Symmetric spaces

Following Loos, we recall that a symmetric space is a manifold M with a product $M \times M \to M$, (written as $S_x y = x \cdot y$ and called *reflection*) such that

$$S_x^2 = id,$$

 $S_x S_y S_x = S_{S_x y},$
 x is an isolated fixed point of S_x

The group G(M) generated by all $S_x S_y$ is the group of displacements.

Let $\mathcal{G}(M)$ be the Lie algebra of G(M). S_x induces an automorphism S_x of $\mathcal{G}(M)$.

The tangent space at x can be identified with the (-1)-eigenspace $\mathcal{G}(M)_{-1}$ of S_x .

This is a Lie triple system (closed under [[,],]) and

is the negative of the curvature tensor of the canonical connection.

Example 1: $M = S^2$ is the unit sphere and S_x is rotation by 180° about x.

In this case,

$$G(M) = SO_3(\mathbb{R}), \mathcal{G}(M) = \mathfrak{so}_3(\mathbb{R}),$$

$$T_{e_3}(M) = \mathfrak{so}_3(\mathbb{R})_{-1} = u_{13}(\mathbb{R}) \oplus u_{23}(\mathbb{R}).$$

Example 2: $M = E^2$ is the real projective (elliptic) plane; i.e., the sphere with antipodal points identified. S_x , G(M), etc. are the same.

Example 3: G a connected Lie group with an automorphism σ of order 2. Let G^{σ} be the fixed points of σ and $G_0^{\sigma} \subset K \subset G^{\sigma}$. Let M = G/K with

$$S_{xK} = L_x \sigma L_{x^{-1}}.$$

We say that a symmetric space M is *rotational* if

- (1) M has a symmetric subspace $N \cong S^2$ or E^2 ,
- (2) if $x, y, z \in N$ with $y, z \perp x$ and $S_y \neq S_z$,

then x is an isolated fixed point of $S_y S_z$.

Theorem (Faulkner): A connected symmetric space is rotational \iff its Lie triple system is isomorphic to

 $u_{13}(\mathcal{A}) \oplus u_{23}(\mathcal{A})$

for some real structurable algebra \mathcal{A} .

Note: locally the symmetric space has coordinates $\{(a, b) : a, b \in A\}$

Idea of Proof: The subgroup $\tilde{G}(N)$ of G(M) generated by all $S_x S_y$, $x, y \in N$ is isomorphic to G(N) = $SO_3(\mathbb{R})$. Thus, $SO_3(\mathbb{R})$ acts as automorphisms of $\mathcal{G}(M)$. The subgroup of rotations of the cube is isomorphic to S_4 (acting on the 4 diagonals).

 $\mathcal{U}(\mathcal{C}_1\otimes\mathcal{C}_2)/Lie(K)$ with dim $(\mathcal{C}_1)=$ 8 is given by

$\dim(\mathcal{C}_2)$				
1	2	4	8	
F_4/B_4	$E_6/(D_5 \oplus \mathbb{R})$	$E_7/(D_6 \oplus A_1)$	E_{8}/D_{8}	

6 Kantor-Smirnov algebras

Let \mathcal{C} be a composition algebra. Let τ be the automorphism of $\mathcal{C} \otimes \mathcal{C}$ with $\tau : a \otimes b \to b \otimes a$. Let $(\mathcal{C} \otimes \mathcal{C})^{\tau}$ be the subalgebra of fixed points of τ .

We find an ideal of dimension 1 in $(\mathcal{C} \otimes \mathcal{C})^{\tau}$ as follows:

It is easy to check that the linear map

$$\varphi: \mathcal{C} \otimes \mathcal{C} \to End(\mathcal{C})$$

with

$$\varphi(a\otimes b)(x) = an(b,x)$$

is an isomorphism of ($\mathcal{C}\otimes\mathcal{C}$)-bimodules with involution, where

$$(a \otimes b) \cdot A = L_a A L_{\overline{b}},$$

$$A \cdot (a \otimes b) = R_a A R_{\overline{b}},$$

$$\overline{A}(x) = \overline{A(\overline{x})}.$$

Moreover, $* \circ \varphi = \varphi \circ \tau$ where $n(Ax, y) = n(x, A^*y)$. Thus,

$$\varphi: (\mathcal{C} \otimes \mathcal{C})^{\tau} \to \mathcal{H}(End(\mathcal{C})) = \{A \in End(\mathcal{C}) : A^* = A\}$$

is an isomorphism of $(\mathcal{C} \otimes \mathcal{C})^{\tau}$ -bimodules with involution.

Since

$$egin{array}{rcl} (a\otimes a)\cdot Id&=&L_aL_{ar a}=n(a)Id=Id\cdot (a\otimes a),\ \overline{Id}&=&Id, \end{array}$$

kId is a submodule of $\mathcal{H}(End(\mathcal{C}))$

and $\varphi^{-1}(kId)$ is an ideal of $(\mathcal{C}\otimes\mathcal{C})^{ au}$.

Let $\mathcal{T}(\mathcal{C}) = (\mathcal{C} \otimes \mathcal{C})^{\tau} / \varphi^{-1}(kId).$

dim \mathcal{C}	$\mathcal{T}(\mathcal{C})$	$\mathcal{U}(\mathcal{T}(\mathcal{C}))$	Lie(K)
1	0	0	0
2	$\cong (\mathcal{C}, -)$	A ₂	$\mathbb{R} \oplus A_1$
4	$\cong (End(\mathcal{S}(\mathcal{C})), *)$	B4	$A_1 \oplus A_2$
8	Kantor-Smirnov	E7	A7